Pseudo-Riemannian geodesics and billiards
نویسندگان
چکیده
In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generalizations, as well as introduce and study pseudo-Euclidean billiards. We prove pseudo-Euclidean analogs of the Jacobi-Chasles theorems and show the integrability of the billiard in the ellipsoid and the geodesic flow on the ellipsoid in a pseudo-Euclidean space.
منابع مشابه
Spaces of pseudo - Riemannian geodesics and pseudo - Euclidean billiards Boris
In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generaliza...
متن کاملSpaces of pseudo-Riemannian geodesics and pseudo-Euclidean billiards
Many classical facts in Riemannian geometry have their pseudoRiemannian analogs. For instance, the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. We discuss the geometry of these structures in detail, as well as introduce an...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملGeodesics and Deformed Pseudo–riemannian Manifolds with Symmetry
There is a general method, applicable in many situations, whereby a pseudo–Riemannian metric, invariant under the action of some Lie group, can be deformed to obtain a new metric whose geodesics can be expressed in terms of the geodesics of the old metric and the action of the Lie group. This method applied to Euclidean space and the unit sphere produces new examples of complete Riemannian metr...
متن کاملGeodesics on an ellipsoid in Minkowski space
We describe the geometry of geodesics on a Lorentz ellipsoid: give explicit formulas for the first integrals (pseudo-confocal coordinates), curvature, geodesically equivalent Riemannian metric, the invariant area-forms on the timeand space-like geodesics and invariant 1-form on the space of null geodesics. We prove a Poncelet-type theorem for null geodesics on the ellipsoid: if such a geodesic ...
متن کامل